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EUSTIS DIRECTORATE POSITION STATEMENT

This program was one of three contractual efforts in an initial attempt
to define a better engine-airframe-propulsion installation interface.
The long-range goal is to provide adequate design and test methods to
insure compatibility of the engine and airframe.

Analytical and experimental work was conducted relative to a comparison
of engine/airframe vibratory interface design techniques. Correlation
was satisfactory to a frequency of approximately 40 Hz.

The technical monitor for this contract was Mr. James Gomez, Technology
Applications Division.
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PREFACE

The work presented in this report was performed by Bell Helicopter Company
under contract DAAJ02-73-C-0017 for the Eustis Directorate, U. S. Army
Air Mobility Research and Development Laboratory, Fort Eustis, Virginia,
The program was implemented under the technical direction of Mr. James
Gomez, Jr.»of the Technology Applications Division,

The study was conducted in two phases. Phase I consisted of the develop-
ment and evaluation of analytical methods related to the interfacing of
airframes and engines and Phase II consisted of the evaluation of experi-
mental procedures for the determination of the mobility parameters
developed in Phase I,

The report is presented in two parts. Part I presents the basic theory
for the mobility techniques used in the study; the finite element models
developed as part of the study; the results of analytical and numerical
investigations conducted under Phase 1; and a comparison of analytical
results from the mobility and modal synthesis (NASTRAN) methods with
data from flight test and with results from the experimental investiga-
tions conducted in Phase II, Part II presents the results of vibration
testing to experimentally determine the mobility parameters for an
OH=58A helicopter at the interface locations for the engine, Numerical
analysis is also presented using the mobility method developed in Phase I
and the data obtained during vibration testing in combination with
mobility data for the engine obtained from the engine manufacturer.
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PART 1 = ANALYTICAL INVESTIGATION

Vibratory interaction between helicopter engines and airframes has been
shown in some cases to be a degrader of reliability and performance of
operational Army helicopters., Considerable work is being done by the
Army and the helicopter industry to determine the extent of the problem
and develop analyses and design procedures for mitigating vibration
effects,

Combining two dynamically complex machines, the airframe and turbine
engine, provides a potential for interface compatibility problems. Exci-
tations can be generated within either of these systems, and the vibratory
characteristics of the combination are influenced by the structural
dynamics of each of the components, and their interaction. Analytical
development is in an early stage because a clear need for the expenditure
of the considerable effort was slow in coming., Until recently, little
information has been documented and disseminated with regard to vibration
environment and its effect on turboshaft engines installed in operational
U, S, Army helicopters, Especially perplexing was the wide spread in the
vibration magnitudes allowed by the various cngine specifications
(Reference 1) and the prescribed methods of and parameters for measurement,

Future Army engines such as are presently being developed are character=
ized by higher rotational speeds and bearing DN values and will, there=-
fore, be more sensitive to adverse engine/airf:rame vibratory interaction,
An immediate need exists to effectively define the helicopter and engine
vibration response characteristics in such a way as to reveal the
respective contributions of the engine and airframe to the vibratory
interaction, and identify and substantiate a set of vibratory parameters
which will provide a common language for engine/airframe vibratory speci-
fication and analysis,

This report presents the results of an investigation of the OH-58A heli=-
copter and Allison T-63 engine vibration characteristics. The investiga-
tion was directed toward the determination of engine response using
impedance/mobility methods and. NASTRAN, The results of these studies

are compared with each other, with results from independent vibration
tests of the airframe and engine, and with engine vibration levels
measured during flight testing of the OH=-58A helicopter.



METHODS OF ANALYSIS

Two independent approaches to analysis of the engine vibration problem
were evaluated in pursuing the objectives of this study. The impedance/
mobility method was evaluated for determining engine response utilizing
test and analytical data, A finite element method, NAsa STRuctural
ANalysis (NASTRAN), was evaluated for determining engine vibration
utilizing the structural dynamic characteristics of the composite system.,

A brief literature survey was conducted to review impedance/mobility
methods currently used in the industry for structural dynamics analysis.
The method of Flannelly (Reference 2) uses the full mobility matrix of a
finite degree-of-freedom primary structure (airframe), the free mobility
matrix of a substructur> (engine) at the interface, and the interface
modal mobility matrix to determine the system response. Flannelly's
method is suited to analytical or test input data and uses the mobility
method principally to determine the primary structure response, The sub-
structure response is determined by modal synthesis from mobility param-
eters at the interface., The method of On (Reference 3) is to: (a) reduce
the size of finite degree-of-freedom mobility matrices for the primary
structure and substructure to mobility matrices with only interface
response coordinates in matrix equation form; (b) determine the interface
response and force by simultaneous solution of the interface equations,
applying boundary conditions at the interface; and (c) determine the
subsystem response by modal synthesis of interface modes,

The method of On was initially chosen for the investigation conducted
herein since his analysis provides a system of equations in matrix form
which leads to a direct determination of interface forces and velocities,
and the determination of subsystem response using only impedance/mobility
me thods ,

Initial evaluation of the mobility method with On's equations for a simple
beam model gave good results, It was later determined that an incon=
sistency existed in On's interface equations, However, with minor
modifications a system of equations evolved which was consistent with
Thevinin's theorem and agreed with the general analysis of the interface
problem given in References 4 and 5,

IMPEDANCE/MOBILITY

Theory

The velocity impedance (hereafter called impedance) of a simple mechanical
system is defined by the relation

Z=FN (1)

where F is the force acting og, the system awd V is the resulting system
velocity, If the ratio is glyén for force and velocity at the same
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location, the term driving point impedance is us d; if for two different
locations, the term transfer impedance is used.

The mobility of the system is defined by the relation
Y=2"1= vy (2)
Rewriting equation (1) yields
vz = F (3)
and dividing both sides of equation (3) by Z gives
v=zlr=vyF (4)

For a complex mechanical system, equation (4) in matrix notation is
given by

v} = [Y{F} (5)

The elements Y;; of the mobility matrix are termed driving point mobilities
for i = j and transfer mobilities for i # j. It is understood that [Y]

is a matrix derived from a set of frequency dependent functions which
describes the dynamic behavior of the system, and that the mobility

matrix at a specified frequency is given by [Y(w)].

For the purpose of analysis, we shall partition equation (5) in such a
way as to isolate coordinates of interest (external coordinates) from
other coordinates of the system (internal coordinates), i.e.,

v Y. 'y ] (F

E eE ¢ 'EL| ) "E
o iz e ans Sreais S 28 (6)
{VI} [YIE lYu] {FI}

where
{VE} - system velocities at external coordinates
fv;] - system velocities at internal coordinates
[(Y..] = driving point and transfer mobilities at external coordinates
EE
due to externally applied forces
[YEI] - transfer mobilities at external coordinates due to internally
applied forces
[YIE] - transfer mobilities at internal coordinates due to externally

applied forces



= driving point and transfer mobilities at internal coordinates
due to internally applied forces

(Y]

[FE} - forces applied at external coordinates
{FI} - forces applied at internal coordinates

It is assumed that force generators of the system are always located at
internal coordinates,

Expanding equation (6) gives

Vgl = [vged {Fgh+ g 17y (7)

and

fvib = [yl {Fgh + [y 3 {F ] (8)

Equation (7) gives the velocity of the system at external coordinates,
i.e., at the coordinates of interest, and equation (8) gives the system
velocities at all other coordinates,

For the particular case where the extcrnal forces are zero, the first of

the matrix products on the right side of equations (7) and (8) vanishes,
and the system velocities are given by

and
iVI} - [YII]{FI! (10)
The velocities given by equation (10) are termed the free velocities,
v, 1
o

Substitution of {VO} into equation (7) yields
el = [Yge P} + {v i (11)

Equation (11) gives the system response at the external coordinates in
terms of external velocities and external forces only,

Consider two systems with common external coordinates.

I 11
FE FE
System I Ot  ——] System II
1 11
VE ”E




It is desired to determine the forces exerted on system II, {FEII}, at
the external coordinates and the resultant internal velocities of system
I, {VIIIl, when the systems are connected together to form a composite
system, Writing equation (11) for each system yields

'l

A VA I A I |

E
(12)
{vEu! - {vou} + [YEEII“FEII}

When the systems are connected together, equation (12) must satisfy a force
equilibrium condition given by

I 11 I II
{Fg b+ {Fg =0 ={F "} = {F "} (13)
and a velocity compatibility condition given by
I 11
fvg 1= 1v, 7} (14)

Substituting equations (13) and (14) into equation (12) and subtracting
the first of equations (12) from the second yields

1 11 11 11 I, _
([¥ge 3+ [Ygg ]) [Fg  p+ v, =V =0 (15)
from which it follows that
-1
I, _ I 11 I 11
g )= (v 1+ Do 1) 1V, - vg (16)
Equation (8) for system II gives
11 11 II 11 11
vy b= Dy P+ Dy 2R (17)

Substituting equation (16) into equation (17) yields

-1
v - [YIEH]{([YEEI] + ™) 1" - Vou!} + Dy L )

Remembering that {FEI} = - {FEII}, the internal velocities of system I
are given by
-1
I, _ I 1 II ) 11 I 1 1
vyt = DYy {([YEE T+ Dvgg 1) W -, l}*’ [¥pp JiFpH (19)

Equation (18) yields the response at internal coordinates of system II,and

F .



equation (19) yields the response at internal coordinates of system I,

for normal operations of both systems after the connection, Equation (16)
yields the interconnection or interface forces, The interface velocities

of systems I and II, i.e., {VE!} and {VEIl}, can be obtained by substitution
of equation (16), and equation (16) with superscripts I and II exchanged,
into equation (7) for systems II and I, respectively,

In the above analysisi both systems I and II are active. If system II
is passive, i.e., {FI!l} = 0, then equation (16) reduces to

-1

[Fg '} = ([vge 1+ (g 1) 1V, 2y
and equation (18) reduces to
-1
v g ) ([YEEI] + [YEEH]) v, | (21)

By application of Thevinin's equivalent theorem and the definitions of
mechanical impedance and mobility, it can be shown (Reference 4) that the
response, Vy, at a desired point on a simple passive system which has
been connected to a simple active system is given by

) ~ -1
v, = [YN/(YI i YZ)] Vom Y (Y 4 )TV (22)

where Yy is the transfer mobility of the passive system (due to forces at
the connection), Y; is the driving point mobility of the active system as
observed at the connection, Y, is the driving point mobility of the
passive system as observed at the connection, and V, is the velocity of
the active system at the point of connection, prior to the connection,

For a complex system, equation (22) in matrix notation becomes
vl = [vgd ([v,] + 0¥ )™ ) (23)
N N 1 Loz o
In terms of the notation given in the analysis above,
II 11 1 . 11
!VN} = ’VI } ’ [YN] = [YIE 1, [Y1] = [YEE 1, [{2] = [YEE ], and
1
Vol = vl

where the superscripts I and Il correspond to the active and passive systems,
respectively, Substitution of these equalities into equation (23) yields

-1
v = gD (g D+ Drgg 1) 1T (24)
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which is identical to equation (21),

The governing equations for the connection of two complex, active dynamic
systems are given by equations (16) and (18). The matrices given in
these equations can be determined directly by test or by analysis using
methods to be shown after digressing to comment on On's method,

Using the method of On, equation (21) is of the form

’VIII} - [Ymn] ([YEI] . [YEn])'l ’VOI} (25)
where
Y] = [¥ge) = [¥g 0¥y )" DY) (26)
and
v | = [\{EI][YII]"1 vl (27)

The superscript is omitted with the understanding that equations (26)
and (27) are identical in form for either system, Equation (25) compares
exactly with equation (23) if {VN}, [YN], [Yl], [YZJ, and {vo} are sub-

stituted for {VIH}, [YIEH], [YEI], [YEII], and {VOI}, respectively,
However, [YEI] and [YEH] differ conceptually from [Yl] and [Y2] and must

be analytically determined, along with {V,7}, from a measurement of the
full mobility matrix [Y] given in equation (5)., From the pure analytical
standpoint, equation (25) in combination with equations (26) and (27)

for each system results in a dilemma brought about by the fact that On's
interface equations involve three unknowns: |{Vg}|, {Fg}, and {vr].

Determination of Parameters

The equation of motion of a complex mechanical system, in matrix form,
is given by

M] {x(t)} + [C] {x(t)} + [K] {x(t)} = {£(t)} (28)
Let
f(t) = Feiwt
. (29)
x(t) = xel®t
7
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Assume steady-state harmonic motion, i.e., X = constant; then

¥(t) = 2 x(1) = 4 Xel® = 1axel®t

and (30)

T Te .
x(t) =f x(t)dt =f Xel®t o le xelot

where r is the period of the harmonic motion, Substitution of equations
(29) and (30) into equation (28) and arranging terms in real and imag-
inary components yields

(m[n] + ﬁ (K] + [c]) {)'(ei“’t} = {Feiwi’] (31)

The Fourier transforms of )(eiwt and Feiwt are given by V(w) and F(w),
respectively., It follows that

(1ol4] + 3= (K] + [€]) V(@)} = {F(w)] (32)

Dividing both sides of equation (32) by {V(w)} gives

_ {F(w)}

33
{V(w)} =

(tul] + & [K] + [c))

By definition (equation (1)),

2(w) = 5—% (34)

Therefore
[2()] = (1u[M] + TIJ K] + [c]) (35)
Furthermore
= -1 1 -1
[Y(w)] = [2(0)]"" = (m{u] + o K+ [c]) (36)

Substituting equation (35) into equation (32) and premultiplying both
sides of the resultant equation by [Z(w)]"1 gives

V] = (2] {Fw)] (27,
From equation (36) it follows that
{V(w)} = [Y(w)] {F(w)} (38)
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Partitioning (38) in terms of internal and external coordinates gives

v Ve YN F

E EE ' "E1 E

sn) =B lopee - & L) (39)
{-"I} [ IE :.Y'II] {FI}

where the w subscript is dropped for simplicity. Equation (39) is
identical to equation (6), In order :o determine the matrices of the
foregoing sections, analytical and experimental procedures are given in
& . the following sections,

¥

oAy

Analytical Approach

The basic procedures for analytical evaluation of the response of two
complex dynamic systems, for which at least one of the systems is active,
may be summarized as follows.

A, Choose a set of appropriate coordinates of the systems and form
the equation of motion of each system, i.e,,

M, (%€} + [;] {%,(e)} + [K;] fx, (&)} = £,(¢)
M) {x5(6) ] + [C,)) {x,(t)} + [K,] {x, (£)} = £,(t)

The equations of motion may be formed by any rational analysis,
It is recommended, however, that finite element procedures

be utilized for large complex systems, since these procedures
are well documented and are especially suited to automatic
data processing techniques of current high speed digital
computers,

B. Using coordinate reduction procedures, reduce the number of
coordinates to the desired level and determine the reduced mass,
(M], damping, [C], and stiffness, [K], matrices for each system,

C. Determine the impedance matrices, [2I] and [ZH], by application
of the Fourier transforms,

D. Partition the impedance matrix for each system in terms of
internal and external coordinates.

E. Establish the frequency range (or discrete frequencies) for which
the analysis is to be conducted,

F, For the initial frequency, determine the impedance matrix, [Z(w)],
and its inverse, [Y(w)], for each system.

G. Dztermine the submatrices, [Ygg], [Ygr], [Y1g), and [Y11], and
the column vector of internal forces, {FI}, and free velocities,
{Vo]s for each system.

e
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H, Determine the interface forces, {Fgllii from equation (16), the
internal velocities of system II, {Vj }t from equation (18) and
the internal velocities of system I, {Vi'}, from equation (19),

I, If the interface velocities, {VEI} = {VEII} = {VE}, are of

interest, determine {Vg} from a combination of equation (16)
with equation (7) for system 1I,

J. Repeat procedures F through I for each frequency of interest,

Experimental Approach

Both analytical and experimental evaluations of the impedance/mobility
method described by the theory presented in preceding sections were
conducted, The experimental approach used for this evaluation is pre=
sented in Part II,

NASTRAN

Finite element methods using the NASTRAN were evaluated, and the
results are reported herein, The theoretical development of NASTRAN
is beyond the scope of this report, However, the general aspects

of the program and the general data requirements for dynamic analysis
are discussed in the following paragraphs,

NASTRAN is a generale=purpose, structural analysis computer program, based
on finite element theory and methods. The program can be used for static
and dynamic structural analysis with several subanalyses under each of
these broad categories, For example, static analysis can include

inertia relief and/or differential stiffness, buckling analysis, piecewise
linear analysis, etc., while dynamic analysis may include direct complex
eigenvalue analysis, direct frequency and random response, modal eigen-
value analysis and response, and direct transient response, Only the
natural frequency and forced response analyses were evaluated in this
study.

The basic inputs for dynamic analysis are
= grid point identification and location
= element identification, grid point connectivity, and orientation
- element physical and/or geometrical properties
- grid point mass {lumped) or density (distribu.ed mass)

- degrees of freedom omitted at each grid point

10
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- type of solution desired; frequency and mode shapes, forced
response, etc,

= location, magnitude and orientation of excitation forces

The program formulates the stiffness, mass and dawmping matrices for the
combined structure and performs coordinate reductions defined by input.,
From the reduced stiffness and mass matrices, the program formulates and
solves the general eigenvalue problem and computes the system natural fre-
quencies, generalized mass and stiffness and mode shapes. If required,
the program then computes the response at predetermined coordinates to
specified forces by modal synthesis.

11
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APPLICATION OF THE METHODS

IMPEDANCE /MOBILITY

Verification of the Theory

The simple beam models shown in Figure 1 were used to substantiate the
mobility analysis, The dimensions of the steel beam were 50 by 2 by 1/2
inches and of the aluminum beam 30,8 by 2 by .46 inches. The beam masses
were determined by lumped parameter methods using the beam cross=-sectional
area, and material density., The stiffness matrix for each beam was deter-
mined using NASTRAN, The stiffness and mass matrices were then used in
the mobility and NASTRAN methods to compute mobility matrices of the

beams and the response of the aluminum beam to forces exerted on the

steel beam,

At the conclusion of the shake test program the response of the steel
beam was determined for grid point 2 and 12 locations. The driving
force was located at grid point 12 for the shake test., The transfer
mobility magnitude (response at grid point 2 to a force at grid point
12) computed by the mobility and NASTRAN methods is compared with

shake test results in Figure 2, The mobility phase is compared in
Figure 3, For the computed cases, the system damping was zero, Good
agreement between analysis and test is shown, ignoring the asymmetric
mode responses at 15 and 137 Hertz, The disagreement at the 15 Hertz
frequency is due to a support system mode. The analytical models were
symmetrical in both stiffness ond mass, while the actual beam tested was
asymmetrical in mass, due to the location of an accelerometer 1 inch
from the beam tip (model grid point 2), Thus, the asymmetric bending
mode shown at 137 Hertz would not be shown in these models for forced
excitation at the beam center, The phase difference (Figure 3) is due to
structural damping characteristics of the beam which were omitted in the
computed cases. The phase angle for computed data had to be indexad by
180 degrees, to account for the difference in reference between analysis

and test,

A similar comparison is given for driving point mobility (response and
force at the same location), at the beam center, in Figures 4 and 5, For
excitation frequencies below 130 Hertz, good agreement is shown between
all cases, Fron 130 Hertz to 190 Hertz, the location of the response
minima and the magnitudes of response are slightly different for all
three cases, This difference is attributed to mass condensation pro-
cedures, omission of grid point inertias, and difference in the methods

of analysis,

The coupled response of the aluminum beam was computed using the mobility
and NASTRAN methods for a 5-pound and 10-pound force applied at grid
points 2 and 22 of the steel beam, The mobility and NASTRAN aluminum
beam responses for this case are compared in Figures 6 through 9

for a frequency range of from 30 to 50 Hertz, The computed response

12



is given for all beam stations except at the connection, The NASTRAN

and mobility methods produce exactly the same response in this frequency
range. Mode shapes of the beam response are given in Figure 10 for each
response frequency., The mode shapes demonstrate that the aluminum beam
experiences only vertical translational motion in the frequency band
shown which brackets the resonance of the steel beam, The above compari=-
sons demonstrate that the mobility and NASTRAN methods produce the same
results over a significant frequency range. It is concluded, therefore,
that the impedance/mobility theory given in the preceding sections
presents a rational analysis,

The NASTRAN input data, computed natural frequencies and mode shapes, and
the stiffness and mass distributions for each beam are tabulated in Appendix
A. The NASTRAN computed responses, the mobility matrices, and the beam
responses for the mobility method are also tabulated in this appendix,
Appendixes to the report are on file at USAAMRDL, Eustis Directorate and
will be furnished on request,

OH=-58A Airframe Model

The two-dimensional finite element model of the OH=58A helicopter given
in Figure 11 was used in both the mobility and NASTRAN methods. The

grid point locations of each of the principal mass points in fuselage
coordinates are presented in the figure, The finite element elastic axis
model of the Allison T=63 engine is shown installed,

A detailed finite element model of the pylon assembly and pylon mounts
is presented in Figure 12, The grid point attachment to the airframe
model is shown in the figure.

The models shown in these figures were assembled using bar elements, pin-
ended bar elements, and linear elastic springs. The properties of these
elements were determined from detailed drawings of the OH=58A airframe
and subsystems, The weight distribution by grid point was determined
from a detailed weight statement for the helicopter, for the empty weight
configuration, Useful load items, i.e., pilot, copilot, fuel, ballast,
etc.,, and the engine distributed weight were added to produce the gross
weight/center of gravity configuration corresponding to the flight and
shake test cases,

Natural frequencies of the helicopter were computed (with the engine
installed) and compared with shake test results, Approximately ten itera-
tions, varying element stiffnesses at selected locations, were required

to produce model natural modes at the same frequencies as shown by shake
test, The fuselage mode shapes for the first nine flexible modes of the
helicopter are given in Figures 13 through 21, The generalized mass,
generalized stiffness, and the engine out, engine in, and shake test
natural frequencies are presented in the figures. Agreement between
analysis and test was good. The element data and computed frequencies

and mode shapes for the above model are tabulated in Appendix B,

13
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T=-63 Engine Model

A detailed finite element representation of the T-63 engine and OH-58A
engine mounts is presented in Figure 22, The element properties for the
mounts were determined from detailed drawings. The element stiffness and
mass distributions for the T=63 elastic axis engine model were furnished
by Detroit Diesel Allison Division, General Motors Corporation, The mass
distribution furnished did not include supported weight items, i.e.,

fuel lines, trapped fuel, engine oil, starter-generator, fuel control,
etc.; these were added. The total engine weight for the model was 196,2
pounds, which agrees with the Bell weights statement,

The elastic axis model furnished Bell was used by Allison to determine pin-
ended engine and shaft modes, The double diaphragm connection between the
engine case and forward compressor was represented by a single bending
spring element between grid points 216 and 217 of Figure 22, The stiff-
ness of the element was varied for inplane and out-of=-plane bending until
the desired frequencies were obtained. The completed model mode shapes

and natural frequencies are compared with Allison shake test results

in Figure 23, Agreement between analysis and test was good.

To provide attachment of the elastic axis engine model to the airframe
model at the engine mounts, the massless, rigid T-element (shown in Figure
22) was used to represent the engine gear case. This element also pro-
vided the required intcrface points,

The element data and computed frequencies and mode shapes for the engine
model are tabulated in Appendix C,

Mobility Analysis

The stiffness and mass matrices for the OH=58A and T=63 models described
in the preceding sections were determined using NASTRAN, The matrices
were determined for the engine and airframe independently and were pro-
vided in punched card form by the program, This data is tabulated in
Appendixes B and C for the OH=58A and T-63 model, respectively,

An impedance/mobility analysis, BHC computer program DRAEO2, was developed
based on the mobility theory previously discussed. The program was coded
to accept mass and stiffness matrices in card form for one or two
mechanical systems not exceeding seventy-five degrees of freedom each,

For the single-system case, the program computes the impedance/mobility
parameters for all degrees of freedom at each frequency desired, up to a
maximum of 150 frequencies., For the two=system case, system I must be
described by the first set of input data and must be active., Two active
systems are permitted, The program computes impedance/mobility parameters
for each system, forms the connection, and computes the response of system
11 due to forces applied at system 1 coordinates,

14



Options are provided by input to plot system I or system II mobility co-
ordinates, interconnection forces as observed by system II, and/or
response of specified coordinates of system II for the combined system,
A linearly scaled response versus frequency graph was selected for forced
response data to provide interfacing with flight test data and because
discrete frequency analysis is generally required in this case. Both
mobility amplitude and phase are plotted. A linearly scaled phase and
logarithmically scaled amplitude versus frequency graph is provided for
interfacing with shake test data (continuous frequency case)., A FORTRAN
listing of the program, including all subroutines, and users guide is
given in tabular form in Appendix D,

The finite element models described in the preceding sections were analyzed
using program DRAEO2, The mobility matrices for the airframe and engine
models are presented in Appendixes B and C, respectively. The results

are discussed in a later section,

NASTRAN

The three-dimensional NASTRAN model of the OH=58A helicopter shown in
Figure 24 was developed to evaluate the efficacy of the modal synthesis
method for coupling the airframe and engine, This type of model, although
not required, was desirable because the topology discretely retains the
engine interface location and provides coupling of vertical, lateral,

and torsional airframe modes. In developing the OH=-58A dynamics three-
dimensional model from a NASTRAN stress model of an Aerial Scout
helicopter, it was necessary to make several major modifications, These
included: the nose structure, main rotor pylon support structure,
tail-boom/vertical=fin elastic axis structure, tail rotor support structure,
and basic fuselage structural properties, Extensive grid point and
connectivity modifications were required, A model having 374 grid points
with 2038 degrees of freedom was condensed in NASTRAN to 245 degrees of
freedom. Even though compressed, this analysis required the entire
storage of the IBM 360 computer, Five passes, at two and one=half hours
per pass, were made to remove singularities and obtain a set of

natural frequencies, The three=dimensional model could not be justi=-
fied, and it was dropped in favor of a two-dimensional model,

The first eight flexible modes of the three=dimensional NASTRAN model are
presented in Figures 25 through 28, The generalized mass, generalized
stiffness and natural frequency for each mode are given in the figures.,
The three-dimensional model frequencies and the two=-dimensional model

and shake test frequencies are compared in Table I, Close agreement
(obtained by iteration of stiffness properties) between the two=dimensional
NASTRAN model and shake test frequencies is shown, All frequencies of

the three-dimensional model, however, are low in comparison to either of
these, except for the baggage compartment floor, main rotor mast lateral,
and second fuselage lateral modes. The element data, natural frequencies,
and mode shape data for the three-dimensional model are tabulated in
Appendix D,
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The two-dimensional NASTRAN model was used in subsequent analyses in lieu
of the more complex three-dimensional model, Engine response, however,
was computed with the three-dimensional model for comparison with
impedance/mobility and two-dimensional model results. Response cases
were computed with force levels for 90-knot, 110-knot, and 130-knot air-
speeds at the discrete frequencies related to the main rotor, tail rotor,
and input drive shaft excitations, The results are discussed and compared
with two-dimensional NASTRAN and impedance/mobility results in the follow-
ing section, Computed engine response data for all! models and cases is
tabulated in Appendix E.

16



RESULTS, PART I

The methods used to compute engine vibration were discussed in the pre-
ceding sections. Also presented was substantiation of the analyses by
simple model tests, and substantiation of the analytical models by mode
shape and natural frequency correlation., To evaluate the NASTRAN and
impedance/mobility methods, engine vibration levels were computed for
three level flight conditions. The driving point mobilities of the free
systems at the interface were determined for a frequency range of from 5
to 60 Hertz for the airframe and from 5 to 220 Hertz for the engine.

It was assumed that engine response in the frequency range of investiga-
tion is due to excitation sources related to the airframe alone, A
review of data measured during flight test of the OH=58A helicopter
(Reference 6) supports this assumption and provides a base from which to
evaluate computed results, To compare computed data with test results
and to track the engine response due to the individual excitation sources,
the spectral amplitude versus frequency format was selected for data
presentation,

A set of discrete frequencies was specified and engine response was com=~
puted using the NASTRAN and mobility methods for level flight airspeeds
of 90, 110, and 130 knots for an approximate gross weight and center of
gravity of 3000 pounds and 109 inches, respectively., Engine response
was computed for 90, 100, and 110 percent of the following discrete
frequencies:

Main Rotor Two=Per=Rev 11.8 Hz
Main Rotor Four-Per=Rev 23,6 Hz
Main Rotor Six~Per<Rev 35.4 Hz
Main Rotor Light-Per-Rev 47,2 Hz
Tail Rotor Two=Petr -Rev 87.6 Hz
Input Shaft One=-Per-Rev 103.0 Hz
Input Shaft Two=Per=Rev 206,0 Hz

Tail rotor and main rotor one-per-rev responses were evaluated during the
experimental phase but were omitted for the analytical study. Since
airframe and directional control pedal vibration levels at these fre-
quencies (main rotor and tail rotor one-per-rev, respectively) are highly
objectionable for reasons of comfort, acceptable force levels producing
these vibrations are negligible in comparison to force levels at the
higher rotor harmonics., Experimental evaluation of engine response
sensitivity to these frequencies was therefore considered adequate for the
purpose of this study.

Tail rotor and main rotor hub shear forces were determined from measured
rotor bending moments for the discrete frequency harmonics presented above,
These forces were computed for 100 percent rotor speed only, and are

e
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considered invariant for the range of rotor speeds indicated, i.e., 10
percent. The computed rotor hub shears are presented in Figures 29 and
30 for the main rotor vertical components, in Figure 31 for the main
rotor inplane components, and in Figure 32 for the tail rotor vertical
and inplane components.

The main rotor vertical shears transmit directly to the fixed system at
the frequency of excitation, i.e., two-, four-, six-, and eight-per-rev.
The main rotor inplane shears transmit to the fixed system at the fre-
quency of excitation T one-per-rev. Thus the one- and three-per-rev
inplane shears result in steady and two-per-rev longitudinal and lateral
hub shears in the fixed system. The magnitude of each of these components
depends on the phase angle (with respect to rotor azimuth) of the force
resultant., The tail rotor two-per-rev vertical shear results in a two-
per-rev lateral fixed system force, while the one-per-rev inplane shear
results in a two-per-rev longitudinal and vertical fixed system force.
The phase angles in Figures 29 to 32 give the rotor azimuth at which the
shears are maximum in the rotating system. Zero degree phase angle for
the main rotor indicates reference blade over the tailboom; for the tail
rotor indicates reference blade down vertically,

Engine responses for the two-dimensional and three-dimensional models
computed by NASTRAN and impedance/mobility are compared in Figures 33
through 44, Based on engine mode shape data, the forward compressor
vertical and lateral vibrations would be the most severe in the frequency
range of interest, and the accessory gearbox vertical and lateral vibra-
tions provide a measure of the interface velocities over this frequency
range. Thus, the data is presented for these locations only. The com-
parison is presented for 90-knot, 110-knot, and 130=knot simulated flight
conditions at the discrete frequencies indicated above in Figures 33
through 38 for engine vertical response and in Figures 39 through 44 for
engine lateral response.

Good agreement between the mobility and NASTRAN methods for the two-
dimensional model is shown for vertical engine response through 50 Hertz.
From this frequency upward, the NASTRAN data does not include the higher
frequency airframe modes (by selection). The mobility method retains
all airframe and engine degrees of freedom and produces engine velocities
as a result of fuselage flexible modes through the applicable frequency
range. The two methods therefore cannot be directly compared for
frequencies above 50 Hertz. The two-dimensional and three-dimensional
NASTRAN data show fair agreement from 50 to 200 Hertz. Since the
response in this region is primarily rigid body fuselage (flexible modes
above 45 Hertz are rejected), this is the expected result. The dif-
ferences in the two-dimensional and three-dimensional NASTRAN computed
velocities for frequencies below 50 Hertz are due to the differences

in the model natural frequencies. For the same frequency placement,

it is anticipated that both models would produce the same results.

For the cases presented above, the data was computed without damping.
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For engine lateral response (Figures 38 through 43) the comments above
apply, except for the comparison between the NASTRAN and mobility re-
sponses for the two-dimensional model below 50 Hertz. In this case, poor
agreement between the two methods is shown, except for the main rotor
two-per-rev responses (10.6, 11,8,, and 13,0 Hertz). In the lateral
direction, the forces are applied at main rotor two-per-rev, tail rotor
two-per-rev, and at the input drive shaft frequencies. The mobility
method shows lateral response to vertical forces, while the NASTRAN
method shows little coupling in this regard, This difference is due to
analytical differences in the mobility and NASTRAN analyses.

In the NASTRAN analysis, the engine is considered a part of the total sys-
tem structure and restraints at the airframe/engine interface are speci-
fied in the modeling procedure. For this analysis the engine mounts are
modeled to perform as axial structural members for any application of
shears and/or moments to the engine. For example, a lateral shear force
applied to the engine center of gravity (statically or dynamically) re-
sults in a lateral shear force and a yaw and roll moment at the engine
mount locations., The lateral shear force is reacted by the two horizontal
members of the lower engine mount bipod, i.e., axial loads are produced

in these members as a result of the applied lateral shear. The yaw and
roll moments are reacted by the vertical members of the left and right
engine mount bipods, In this case too, axial loads are produced as a
result of the applied loads., Thus, for the NASTRAN application, out-of-
plane bending of the structural members comprising the engine mounts is not
considered in the modeling process and for the assembled structure these
members react only axial loads,

In the mobility method, there are several choices for formulating the air-
frame mobility at the interface (reference Figure 22)., One formulation is
to determine the airframe mobility at the lower mount points (grid points
202, 204, 205, 207, 208, and 210) and the mobility of the engine mounts
separately and superpose the results, This formulation presents a direct
measurement of airframe and engine mount mobilities independently, A
second formulation is to treat the engine mounts as a single unit and
connect the mounts by means of rigid massless structure at grid points

203, 206, and 209, This formulation leads to airframe/engine mount mobili-
ties representative of a single effective mount, A third formulation is i
to determine the airframe/mount mobilities at grid points 203, 206, and
209 for an independent representation of each mount as part of the basic i
airframe structure, For this formulation, the system mobilities are ]
representative of the free system, The third formulation was chosen for i
this study. In the formulation of the impedance/mobility analysis, the ‘
above representations would produce identical results since no restraints

are imposed on the method of separating the systems except that the ]
separation is accomplished at interface locations, It was assumed that
satisfying the conditions of force equilibrium and velocity compatibility
at the interface provided sufficient conditions for the analysis of the
combined system behavior, The test results have shown that reaction re-
straints at the interface to forces applied to either system must also

be specified, That is, care must be taken to assure that the individual
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system behavior after separation satisfies design reaction restraints
imposed on the systems by the connecting element, in this case the engine
mounting system,

Computed data (all methods) is compared with measured flight data and with
shake test data in Figures 45 through 52, Vertical and lateral response
at the forward compressor and gearbox is presented for airspeeds of 110
knots (Figures 45 through 48) and 130 knots (Figures 49 through 52).

Very little agreement is shown between analytical and test results, and
between flight test and shake test results. For frequencies below 50
Hertz, the mobility and two-dimensional NASTRAN results are generally
greater than flight test results, For frequencies above 50 Hertz, the
two-dimensional and three-dimensional NASTRAN data is considerably lower
than flight test results, The mobility method, in general, produces
higher analytical responses for frequencies above 50 Hertz than shown
for the flight test data, but is comparable in some instances., Experi-
mentally determined engine responses are greater in most instances than
flight test or computed data. This is a result of the measurement and
testing techniques employed and is discussed in greater detail in Part II,

For all comparisons presented in the above discussion, the computed data
were generated from finite element models with no connection between the
engine and main transmission (disconnected transmission input shaft), A
comparison between computed response for the disconnected case with com=
puted response for a rigid transmission input shaft is given for each
engine response location in Figures 53 through 60, The comparison is
presented for computed data using the NASTRAN (two-dimensional) and mobil-
ity methods. For the forward compressor and engine gearbox vertical re-
sponses (Figures 53 and 54), the system response with a rigid input shaft
(solid symbols) is lower at most frequencies than the disconnected system
response, For all other locations, the rigid input shaft response is
greater than the disconnected case at most frequencies. For lateral
response (Figures 57 through 60), a greater disagreement between the

me thods of computation is shown.

Computed data for the forced response cases discussed above is given in
tabular form, for all engine coordinates, in Appendix D, The mobility
matrices for the airframe and engine are presented in tabular form in
Appendixes B and C, respectively.

Computed and measured airframe driving point mobilities at interface co-
ordinates are compared in Figures 61 through 69, The airframe driving
point mobilities are presented for a frequency range of from 5 through 60
Hertz, This covers the range of fuselage modes correlated in the develop-
ment of the analytical model. This data is presented primarily to com-
pare equivalence of the model with the actual system,

The airframe driving point mobilities are presented for the left engine
mount in Figures 61 to 63, for the right engine mount in Figures 64 to 66,
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and for the lower engine mount in Figures 67 to 69, The mobility data

for the analytical model is given by the solid curves, and shake test
results are given by the dashed curves. The driving point mobilities of
the analytical model for the left and right mounts (all degrees of freedom,
Figures 61 to 66) and the lower mount lateral degree of freedom (Figure
68) do not compare favorably with shake test results., The disagreement
between the two sets of data is due to the bending stiffness of the mounts
and the system damping with respect to airframe modes at the interface.

The comparison of airframe driving point mobilities for the lower mount
longitudinal and vertical degrees of freedom, Figures 67 and 69, shows
reasonable agreement between analysis and test, The mobility data pre=-
sented in Figure 67 clearly identifies the difference in modal frequency
placement between the analytical model and the full-scale airframe. The
effect of damping omission in the analytical model is also demonstrated,
The mobility data presented in Figure 69 shows good agreement between
analysis and test (ignoring the support system mode shown in the test
data)., The difference in this case is due entirely to system inertia as
observed at the interface,

Computed and measured engine driving point mobilities are compared in
Figures 70 through 81, In this case, shake test data is presented by

the curves and analytical data is given by the triangular symbols, The
analytical model of the engine used for the mobility analysis and NASTRAN
was a simple elastic axis model as discussed in an earlier section, In
the development of the model, inertia coupling of vertical and lateral
modes was ignored, and a vertical mode of the forward compressor canti-
levered off the gearbox was not simulated, Considering these differences,
and the lack of damping in the various engine bending modes, good agree-
ment between analysis and test is shown. A clear indication is given,
however, for two discrepancies between the engine model used in the
mobility analysis and the NASTRAN free-free engine model, In the first
place, the lateral engine natural frequency used in the mobility analysis
was approximately 180 Hertz (see Figures 70, 71, 73, 74, 77, and 80).
This yields frequencies which are approximately 24 Hertz higher than

shown by NASTRAN, Secondly, the rigid body roll inertia of the engine was
apparently omitted in the mass condensation process (see Figures 72, 75,
and 77), These figures show that excitation of the engine at the lower
mount location in the lateral direction, or excitation at the left or
right mount locations in the vertical direction, produce only mass-like
response of the engine (in translation) which is greater than rigid body
motion, The system motion is the result of a vertical (or lateral)

force applied at the engine elastic axis which is groportional to the
inertia of the very small masses (=3 X'107® lb-secZ/in,) at each interface
point, i.e., a very low translational force, Unlike the case of the

mount bending stiffness, this latter effect is overcome by the equilibrium
and compatibility conditions after connection, The computed mobility
data for the above cases is tabulated in Appendix B for the airframe and in
Appendix C for the engine,
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PART II - EXPERIMENTAL INVESTIGATION

In the past several years, a number of matrix structural analyses (Refer-
ences 2, 3 and 7) using impedance/mobility (sometimes called impedance,
sometimes mobility) formulations have been developed. Although wide var-
iations in the analytical techniques are used, most of these analyses

use modal synthesis techniques with regard to the interfacing of one
system with another, and all reportedly are applicable to experimental
determination of system parameters, In at least one case (Reference 3),
experimental procedures are outlined and recommended for determination of
mcbility parameters,

A brief survey of impedance/mobility literature failed to produce even one
instance in which experimental methods were actually used to determine the
mobility characteristics of a complex syst.m such as the helicopter for
any significant frequency range. In one case, well-behaved "simulated"
test data was reported (Reference 7) for a very wide frequencv range

(zero to 600 Hertz), showing that the analytical method was insensitive

to experimental error, The simulated test data were reportedly represen-
tative of a full-scale helicopter structure,

During the conduct of the present investigation, analytical procedures
were developed which demonstrated that the mobility method can predict

the combined response of two complex dynamic systems from the mobilities
of the separate systems and the simultaneous solution of interface
mobility equations, For identical analytical models, the above procedures
produced the same results as NASTRAN, a well-documented matrix structural
analysis,

The impedance/mobility method developed for this study is also applicable
for use with experimentally de cermined mobility parameters, To obtain
such parameters for evaluating this concept, a lengthy vibration test of
the OH-58A airframe was conducted by Bell Helicopter Company and a similar
vibration test of the T=63 turbine engine was conducted by Detroit Diesel
Allison Division of General Motors Corporation. The results of the Bell
Helicopter Company tests and the results of a numerical analysis using
Bell and Allison experimental data are reported herein,
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SHAKE TESTS
HARDWARE
General

An OH-58A helicopter, S/N 40611, was provided by the Government for the
conduct of ground vibration testing required by the contract, The main
rotor and tail rotor hub assemblies were removed and replaced with test
hub assemblies. The main and tail rotor blades were replaced with equiva=
lent weights rigidly attached to the test hubs. The helicopter was
configured for a gross weight of 3005 pounds with a center of gravity at
fuselage station 109,1, The configuration was obtained using full fuel
and ballast as shown in Table II. The helicopter was supported on a low
frequency (below 5 Hertz) suspension system., The helicopter installa-
tion and suspension system for a typical test is shown in Figure 82,

Excitation Hardware

A Lazan mechanical shaker was installed in the main rotor hub assembly

to provide vertical, lateral and longitudinal excitation of the helicopter
for the determination of airframe natural frequencies. Photographs of

the orientation and arrangement of the exciter and associated hardware

are presented in Figure 83 for vertical and longitudinal excitation.
Detailed views of the exciter and hub assembly are presented in Figure 84
for vertical, longitudinal and lateral excitation at the main rotor hub,
The arrangement of the impedance head for longitudinal and lateral tests
is shown in Figure 85, The mechanical shaker was driven through a flexible
cable and Vari-Drive assembly powered by an electric motor. A photograph
of the Vari-Drive assembly is presented in Figure 86, The mechanical
shaker was operated over a frequency range of from 2 to 45 Hertz.

An MB model Cl0 electromagnetic exciter was used for excitation of the
helicopter during mobility tests. The arrangement of the exciter and
associated hardware for excitation at the main rotor hub is shown in
Figure 87 and for excitation at the tail rotor hub is shown in Figure 38,

To facilitate excitation of the system at the engine mounts, main trans=-
mission, and at the engine output shaft, a crank assembly was used with
the electromagnetic exciter. A detailed view of the arrangement of
exciter and crank assembly for a typical test is shown in Figure 89.
Whenever possible, the direct application of exciter force was utilized,
The arrangement of exciter and crank assembly is shown in Figure 90 for
excitation at the left~ ur cight-hand engine bipod, in Figure 91 for
excitation at the lower engine bipod, in Figure 92 for excitation at the
main transmission input shaft, and in Figure 93 for excitation at the
engine output shaft, In each of the above figures the general arrangement
of exciter and crank assembly is shown with close-ups of the exciter input
for vertical, lateral and longitudinal tests, where available,
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INSTRUMENTATION

Transducers

Endevco piezoelectric accelerometers were used at all response locations
specified for the tests. The type, laboratory serial number and calibra=-
tion date of each accelerometer are presented in tabular form in Appendix
G. Endevco, type 2110, impedance transducers (Z=head) were used to
monitor force and acceleration at the driving point for each test. The
laboratory serial number and calibration curves for each impedance trans=-
ducer used are furnished in Appendix G, The approximate locations of
fuselage-mounted transducers are shown in Figure 94 and of engine-mounted
transducers in Figure 95. Typical transducer installations are shown

in Figures 96 and 97 for airframe vertically and laterally mounted
accelerometers., Transducer installaticns on the engine mounts and
transmission are shown in Figure 98; engine-mounted transducers are

shown in Figure 99.

For airframe vibration tests conducted to identify fuselage natural fre-
quencies and mode shapes, transducers were installed as indicated in
Table III., For conducting mobility tests, transducers were located and
recorded for main rotor and tail rotor hub excitations as indicated in
Table 1IV. For excitation at the engine bipods or at the main transmission,
input shaft transducers were located and recorded as shown in Table V.
Due to limitations of the data acquisition system, each of the mobility
measurement tests had to be performed twice. The reference letter, A or
B, given in Tables IV and V indicates the transducers recorded during
the first and second test, respective:ly, Transducers installed during
the combined airframe and engine vibration tests are shown in Table

VI.

Data Acquisition System

A photograph of the data acquisition system employed during the shake
tests is presented in Figure 100. A flow diagram of the system is given
in Figure 10l. Acceleration mobility magnitude for a selected transducer
location was; monitored using an X~-Y plotter for all tests conducted to
determine airframe natural frequencies and mode shapes; however, mobility
phase was not monitored. All other transducer locations were monitored
using a BHC developed mode shape meter display, Airframe mode shapes were
recorded for each natural frequency using a video recorder in combination
with the mode shape meters.

Velocity mobility magnitude and phase for a selected transducer location
were monitored using two X-Y plotters for all tests conducted to determine
mobilities, Velocity was obtained by integrating the acceleration output
signal from the charge amplifier for a specified transducer location,

The characteristics of the integrator, i.e., output amplitude and phase
angle as a function of frequency, are presented in Appendix G. During the
conduct of the mobility tests all other transducers were monitored using
the mode shape meter display.
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For all tests, the output signals from the charge amplifiers, i.e.,, force
or acceleration, were recorded directly on tape and simultaneously
monitored using the mode shape meter display. Velocity and/or accelera=
tion mobilities for all required transducer locations were obtained via
playback from magnetic tape through the data acquisition system,

TEST PROCEDURE

Tests were conducted to determine airframe natural frequencies and response
characteristics, airframe internal and free mobilities at the engine mount
locations (triaxial ), and coupled engine/airframe response., The general
procedure for each test was essentially the same: the excitation hardware
and instrumentation were installed} the helicopter was lifted on its
suspension; and an excitation frequency sweep was conducted at a constant
force level, where possible, for the applicable frequency range. The

T=63 engine was installed during tests conducted to determine the airframe
natural frequencies and engine coupled response. For all other tests,

the engine was removed,

A schedule of required tests is presented in Table VII, The purpose,
orientation and location of the exciter, applicable instrumentation, and
frequency range for each test are shown in the table., Tests were not
performed in the sequence shown, but rather in the order of minimum con=-
version time from one set of excitation hardware and instrumentation to
the next, However, each series of tests, A, B or C, was completed in
order, Additional tests were conducted to establish force level and
charge amplifier sensitivities for the specified frequency ranges, to
repeat tests aborted due to mechanical or instrumentation failures, and
to check the repeatability of the data acquisition system at regular
intervals,

A test log was maintained by the test engineer, and instrumentation set=
up sheets were filed for each instrumentation change, The instrumentation
setup sheets are presented in Appendix G. Specific test procedures for
series A, B, and C tests are discussed below.

Series A Tests

Series A tests were conducted to identify airframe natural frequencies

and mode shapes. A Lazan mechanical exciter was employed for these tests,
Frequency sweeps were conducted for each test from 2 or 5 Hertz to 45
Hertz, using one force level up to 20 Hertz and a lower force level from
20 to 45 Hertz. At the completion of each frequency sweep, the exciter
was set at a frequency corresponding to each substantial peak shown on the
acceleration mobility curves recorded on the X-Y plotter. Each of these
frequencies was identified as to modal characteristics, and the principal
airframe mode shapes were recorded using the video recorder in combination
with the mode shepe meter display. The natural frequencies corresponding
to empennage and/or local absorber modes were identified primarily by
feel, All principal response peaks were identified and noted on the
acceleration mobility curves.
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Series B Tests

Series B tests were conducted to determine the airframe internal and free
velocity mobilities at engine interface coordinates. Excitation for these
tests was provided by an electromagneti- exciter for a frequency range

of from 5 to 200 Hertz, Prior to each Jdata test, a frequency sweep was
conducted and transducer output for each of the six locations was monitored
on the mode shape meter display, Variations in mobility parameters
exceeding 4 cycles (log paper) or a recording range greater than 80 db
were observed., Since the dynamic range of the data acquisition system,

in cascade, was 40 db, this required the establishment of force levels

and charge amplifier sensitivities to guarantee that no loss of data would
occur during the conduct of a given test, Thus, each test was conducted
in from two to four frequency sweep increments with a different constant
level force and instrumentation setup sheet for each increment,

During the initial tests, efforts were made to identify as many peak re-
sponse points as possible, This proved to be futile for frequencies

greater than 40 Hertz,since a large number of control tube, panel, and
absorber=-type modes w:re found to exist, and the effort was abandoned.

Series C Tests

These tests were conducted to determine engine response due to main rotor,
tail rotor, and engine output shaft forces. Tests were conducted for a
frequency range of from 5 to 200 Hertz. The test procedure for this series
was identical to the series B tests,

DATA PROCESSING

Acceleration and velocity mobility data were generated during the above
tests for use in evaluating engine response and engine/airframe compat-
ibility using mobility techniques. The data were accumulated in
graphical form, i.e., mobility magnitude and phase graphs. Each graph
contains information for a single element of the total airframe mobility
matrix., A test log, in matrix form, giving the run number and plot number
for a given response location due to a specified force location is pre-
sented in Figures 102, 103, and 104, For each matrix element, the upper
number indicates the test run number and the lower number indicates the
plot number, The matrix row and column numbers specify the excitation
I1.D, and response I1.D,, respectively, Negative row (excitation) and
column (response) numbers indicate force and/or accelerometer orienta=-
tions opposite to the assigned coordinate reference,

Digital processing of the data was required to obtain mobility amplitude
and phase values at each of 26 discrete frequencies related to airframe
excitation sources. A Gerber oscillograph reader was used to obtain
punched IBM cards with mobility amplitude and phase at each of the desired
frequencies in terms of inches from graph reference. A computer program,
DRAEOl, was generated to transform the punched card data to mobility ampli-
tude and phase and to store the information on magnetic tape for further
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processing, The data were stored in terms of the test run number, plot
number, excitation I.D,, and response I.D. indicators given in Figures 102
to 104 at each of the 26 discrete frequencies.

A schematic diagram of the coordinate system reference and force and
transducer orientations for the shake test is presented in Figure 105.
Positive force was determined by an up-scale signal for a compressive load
on the impedance head, and positive acceleration was determined by an up-
scale signal for transducer motion in the positive coordinate sense. The
mobility phase was plotted for velocity lag with respect for force., This
1s 180 degrees out of phase with the normal mobility phase reference.
During processing of the data in program DRAEOl, 180 degrees was added to
each mobility phase angle, and mobility magnitude sign errors due to force
or transducer orientation were corrected,

A partitioning of the measured airframe mobilities based on the theory
presented in Part I of this report was performed as shown in Figure 106,
The cross-hatched submatrices indicate element data obtained during the
shake test, Partitioning given by the heavy solid lines in the figure
indicates the required airframe mobilities for a disconnected transmission
input shaft, For this case, data for rows and columns 10, 11, and 12 do
not exist, and only 9 interface coordinates are required, Partitioning
given by the heavy dashed lines in the figure indicates the airframe
mobilities for the inclusion of the transmission input shaft, For this
case, twelve interface coordinates are required, and data for rows and
columns 10, 11, and 12 were determined analytically. The determina-

tion of these data is discussed in a later section. The matrix
partitioning was performed to be compatible with the theory and with
engine mobility data furnished on magnetic tape by the engine manufacturer,
The engine mobility data thus provided is shown in matrix form in Figure
107.

During the combined airframe/engine shake test, engine response was
measured in terms of engine transfer mobilities (due to airframe excita-
ticn sources) at engine response coordinates specified by the engine
installation drawing. The data were arranged for analytical use in matrix
form as shown in Figure 108, The matrix equation form given in the figure
demonstrates the utility of these data} i.,e., the engine velocity at a
given location is determined by

k
vV, =3 Y F
i P CHR,, *J

where the subscript i indicates the selected response coordinate, and the
summation is performed for the k products of mobilities of the ith row

with the jth forces of the airframe internal force vector, {F_}. Engine
velocities computed in this way provide a basis for evaluating the mobility
method presented in Part I using experimentally determined airframe and
engine mobility data.
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The mobility magnitude and phase graphs recorded during the shake tests
are presented in Appendix H, The data are arranged in the appendix in
matrix element order for the matrices and submatrices presented in
Figures 106 and 108,
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NUMERICAL ANALYSIS

DETERMINATION OF TRANSMISSION INPUT SHAFT MOBILITIES

The contract required the evaluation of engine response using experi=-
mentally determined mobilities for the OH=-58A airframe with a pin-connected
transmission input shaft and with a rigidly connected transmission input
shaft, The objective was to "bracket" the upper and lower limits of the
engine response due to the type of connection for the transfer of power
from the engine to the airframe rotating components, During shake tests,
the transmission input shaft was removed., To comply with contract require-
ments it was necessary, therefore, to add the transmission input shaft
mobilities to the airframe mobility matrix analytically, Computer

program DRAEO3 was used to accomplish this task and to provide the

proper partitioning of mobility data obtained during the shake tests,

To determine mobility data for the transmission input shaft, the shaft

was treated as a subsystem of the airframe, The free system mobilities

of the shaft with pinned couplings at each end, and with rigidly attached
couplings at each end, were determined using finite element NASTRAN models.
For the pinned shaft, rotational degrees of freedom between the couplings
and shaft were unstrained except in the g, (torque) coordinate, In each
case, the model was symmetrical, and the driving point and transfer
mobilities for unit forces were determined for one end of the shaft, and
the remaining data determined on the basis of symmetry and system
linearity, With the shaft mobility data determined in this fashion, and
the airframe mobility data determined from test, the desired coupled
airframe/input shaft mobilities were determined using program DRAEO3

which is based on the theory and methods described in Part I, wherein sys~
tem I is the airframe and system II is the transmission input shaft, In
terms of the mobility matrices given in Figure 106 this results in the
determination of the elements of the airframe submatrices [YEEz]’ [YEE3],

Program DRAEO3 is essentially the same as program DRAEO2 discussed in

Part I, The basic difference is that program DRAEO3 was coded to accept
direct matrix input, and special subroutines were added to complete the
transmission input shaft mobility matrices, determine the coupled
airframe/input shaft mobilities, and create a magnetic tape with all
required data, properly partitioned, including engine mobilities furnished
by the engine manufacturer, A copy of the resulting tape was furnished

to the engine manufacturer,

The elements of the submatrices [YEEZ] and [YEE4J were determined (via

program DRAEO3) by computing the velocities at the left, right and lower
engine mount bipods and at the free end of the transmission input shaft
due to triaxial unit loads applied at the free end of the shaft. The
elements of the submatrices [YEE3] and [YEI3] were determined by
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computing the velocities at the free end of the shaft due to unit tri-
axial forces applied at the respective airframe coordinates,

To determine the mobilities for the submatrix [YEIQJ’ the theory had to

be revised since external forces applied at interface coordinates==in this
case, coordinates at the transmission end of the shaft==are not allowed,
This was accomplished by treating the airframe and transmission input
shaft as passive systems and determining the velocity at the interface

of these systems due to an external force applied at the interface. For
unit forces this is equivalent to determining the driving point mobility
of the combined system at the interface coordinate., Thus,

[YEIQJ = [YEEI][YEEH]/([YEEI] + [YEEH])

where the matrices [YEEI] and [YEEII] are the free system mobilities of
the airframe and input shaft at the interface, and the notation Is the
same as that used in the mobility theory presented in Part I,

The required matrices were determined as described above for the pinned
and rigid transmission input shaft cases, This permitted the evaluation
of engine response for three cases:

1. Disconnected transmission input shaft

- Only the first 9 rows and columns of the airframe [Y,.] matrix
are required. Data computed for this case can be directly come
pared with shake test results given by the [Y. ] mobility
matrix, il

2, Pinned transmission input shaft

- Computed engine response can be compared with results
given by the [YCHKJ mobility matrix if interface forces

at tne engine output shaft coordinates are used, or if trans-
mission input shaft forces are not applied at all. Note that
the [Yoyg] matrix (Figure 27) does not include engine responses
due to forces applied on the transmission side of the input
shaft,

3. Rigid transmission input shaft

- The same comparison criterion established for the pinned-
shaft case is applicable.

The mobility matrices determined from test and the above analytical pro-
cedure are presented in Appendix J. The data is presented in the
appendix in tabular matrix form using complex number notation, Matrices
are presented for each of the twenty-six discrete frequencies related to
airframe excitation sources,
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DETERMINATION OF ENGINE RESPONSE

Program DRAEO4 was developed to determine engine response using the
mobility matrices determined from Bell and Allison shake tests and modi-
fied as indicated in the preceding section, This program simply reads
the data from the tape generated by Program DRAEO3 for the applicable
transmission input shaft, i,e., disconnected, pinned, or rigid, and per-
forms the required matrix operations indicated below:

-1

N (R Mg 1) (0e"D 17"

{Fg

and

11

SR ] 8

v I} = [y I

E

where {FEII} is a_column vector of interface forces at engine interface
coordinates, {VgIl} is a column vector of engine velocities at the
desired engine response oordinates, [Yggl] and [Yggll] are the free
system airframe and engine mobility matrices due to interface forces,
[YEII] is the airframe internal mobility matrix as observed at the inter-
face, [YIEII] is the engine transfer mobility matrix at internal coor=-
dinates due to force applied at the interface, and {FII} is a column
vector of forces applied at internal airframe coordinates, The column
vector [FII} is determined by input and specifies the operating condition
of the helicopter for which the engine responses are determined.

Engine response was computed for each of the cases and conditions indicated
in Table VIII, The discrete frequencies and corresponding airframe excita-

tion sources related to the above analysis are presented in Table IX. The

results of this analysis and results of the shake test are discussed in the

following section, Utilization instructions and listings of each of the
computer programs discussed above are presented in Appendix K.

Listing of the computer programs used for the evaluation and processing of

experimental data is presented in Appendix K,
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RESULTS, PART 11

SHAKE TESTS

The results of shake tests conducted under this contract are presented in
graphical form in Appendix H. Mobility magnitude and phase graphs for
each test are presented in matrix element order and are identified by
matrix element number pairs. The element order is based on the matrix
partitioning given in Figure 106, It was often necessary to shift the
mobility magnitude scale up or down one decade, To call attention to
this, vertical lines are drawn on the appropriate graphs, and scale multi-
pliers are given on the graph for the regions affected. Scale multipliers
with positive exponents result in a downward shift of the printed scale}
i.e., for a scale factor of 101, a scale value of ,01 becomes .1, .001
becomes .0l, etc. Negative exponents result in an upward shift of the
printed scale.

For most of the mobility graphs, a substantial number of resonance peaks
are shown, Identification of the peaks above 15 Hertz, in most cases,

was not practicable due to lack of instrumentation and time, Furthermore,
many of these peaks are related to vibrating shafts, bellcranks, unloaded
support structure, and absorber type modes which under load are at
different frequencies and have appreciable damping. Consequently, the
measured responses are not considered to be representative of the engine
environment for normal operating conditions and are inadequate for eval-
uating operating engine/airframe compatibility, For the direct evaluation
of the mobility method, however, this is not considered a critical problem
since the majority of these modes exist with the engine removed or installed.

In the development of the mobility theory, no restrictions or assumptions
were imposed on interface coordinatcs for the free system, The force
equilibrium and motion compatibility equations were assumed to be adequate
to establish boundary conditions at the interface. In actual design
practice, however, the lateral motion ol the left and right engine mount
bipods is restrained by lateral characteristics of the lower engine mount
bipod and the vertical characteristics of the left and right bipods,
Vertical motion of the lower engine mount bipod is restrained by the
vertical characteristics of the left and right bipods and the longitudinal
characteristics of the lower bipod. Thus, for the OH=-58A helicopter, the
engine mounts are designed to act as a single unit and the system mobility
characteristics should be representative of this case., The mobility repre-
sentation chosen at the start of this study and upon which all test plans
and procedures were predicated was not the optimum choice and the test re-
sults are essentially inadequate with regard to verification of the mo-

bility approach,.

A comparison of shake test and computed vertical driving point mobility
for the left and right engine mount bipods is presented in Figures 109

and 110, respectively, A similar comparison for the lower engine mount
bipod is presented in Figure 111, Note that in Figures 109 and 110 the
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airframe mobility is representative of the mount lateral stiffness proper-
ties for both the analytical and test cases, even though the excitation

is applied vertically, The airframe modes in the experimental data are
completelv masked by the mount characteristics for the frequency range
shown, In contrast, the airframe mobility at the lower mount bipod
(Figure 111), for similar loading, i.e., force applied in the plane of the
mount, is characteristic of the airframe structure and clearly shows re-
sponse of airframe modes. If the mounts were properly restrained to act
as a single unit, the response characteristics shown for the left and
right bipods due to vertical excitation should be similar to that shown
for the lower bipod with longitudinal excitation, i.e,, response repre-
sentative of airframe structure. For the correct representation of the
mounts, lateral stiffness properties should not be identifiable for the
frequency range applicable to this study, even for excitation in the
lateral direction. The computed data for the above comparisons were
generated using a two-dimensional finite element model of the airframe
and engine mounts,

NUMERICAL ANALYSIS

Engine response was computed using program DRAEO4 with Bell Helicopter
Company and Allison measured mobility data for the cases presented in
Table IX. For the original computation of case one, it was observed
that little agreement existed between the computed responses and the
measured coupled system response., Several analytical and experimental
errors were found and corrected without improving the degree of correla-
tion, as evidenced in Figures 112 through 119 which compare computed
(using measured mobilities) with shake test measured engine velocities,
The principal remaining error source is due to improperly restraining
the engine mounts when measuring the free mobility of the airframe,

A comparison of engine velocities computed using experimentally measured
mobilities and finite element models with flight test measured response
is presented in Figures 120, 121, and 122 for vertical engine responses
at the forward compressor, engine gearbox, and turbine midsplit coordi-
nates, respectively. Computed engine velocities (from test results)

are greater than analytically determined velocities using finite element
models for all locations at most frequencies. The lack of agreement be-
tween computed test responses and flight test results is attributed to
engine/airframe mount interface definition, unrealistic resonances re-
flected in the airframe mobility data, and uncertainty in the magnitude
and phase angles of the shear forces deduced from flight data, Only the
two=-per-rev vertical shears are known with any degree of certainty. Data
for the numerical analysis cases are tabulated in Appendix J.
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CONCLUSTONS

The results of this investigation have shown that:

Engine response computed using the mobility method or the modal
synthesis (NASTRAN) method is the same for the same analytical
model over a given frequency range. This substantiates the
mobility method as an analytical tool,

Computation of engine response is feasible using either method
if reasonable representation of each system, airframe and engine,
is provided for the full frequency range of interest,

Engine/airframe interface analysis is possible using finite element
models with as few as seventy-five degrees of freedom.

Problem areas requiring further study include evaluation and
development of adequate test mcthods, and identification and reso-
lution of problems involving interfacing finite element stiffness
and mass matrices with impedance/mobility transformation equations,

Due to insufficient data, a preference of one analytical method
over the other (NASTRAN versus impedance/mobility) cannot be
demonstrated, However, significantly shorter run times are
anticipated for subsystem evaluation using the mobility method.

Force equilibrium and displacement compatibility equations at
the interface are not sufficient to guarantee free choice with
regard to system separation. Physical restraints imposed by
design, particularly for a statically unstable free system, must
also be considered,

Experimental measurement of mobilities for complex systems such
as the helicopter requires pretest modifications to remove or
restrain loosely attached shafts, bellcranks, etc,, if realistic
parameters are to be obtained,

Although adequately demonstrated by the analytical methods re-=
ported herein, the impedance/mobility theory applicable to

this study could not be verified on the basis of the experimental
results,

In the brief literature survey conducted for this study, no references
were found which indicated that impedance testing of a full-ccale heli-
copter over a very wide frequency range had ever been performed.
Developers of matrix structural analyses using impedance formulations
have used "simulated" test results to demonstrate the experimental appli=-
cation of the theory. The effort reported herein was overly ambitious

in regard to the experimental aspect of the program, and it is believed
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that a considerable effort, over several years, will be required before
adequate methods and procedures for the experimental determination of
full-scale helicopter mobility parameters are developed. Adequate pre-
diction methods, using mobility concepts, are likcly to precede experi-
mental methods by a wide time spsn,

Experimental methods and precedures could be realized in the most expe=-
ditious manner as outlined below:

1,

2,

Verify the mobility analysis by conducting vibration tests using
four or five simple tractable systems, increasing the complexity
of the systems and the number of interface coordinates with
each new system,

Demonstrate the degree to which mobility methods are dependent
on the way systems are disconnected, or develop analyses which
are independent of the method of separation as an alternative,

Determine by experiment with relatively complex systems whether
acceleration mobility would be more advantageous than velocity
mobility in producing the desired result, One obvious advantage
is a reduced dynamic range of the data acquisition system,

Determine first-order airframe mobility parameters by conducting
vibration tests of an airframe in various stages of assembly,
including the evaluation of principal substructures in each stage.

Determine the effect of control tubes and other discrete systems
on the airframe mobility under simulated loading for these sys-
tems,

Determine if direct evaluation and successive addition of sub-
systems will produce an adequate description of the total heli-
copter dynamics, including the engine,

The following related areas may also require investigation and/or
development:

Data acquisition systems
with increased dynamic range (up to a 120 decibel range),
improved and expanded recording techniques, and direct computer
interfacing to limit data processing.

Vibration test hardware

with improved exciter and/or system suspensions to minimize
hardware manufacture and changeover periods, and

evaluation of random vibration techniques to minimize the
lengths of tests for large frequency ranges,
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The results of the study conducted under this contract fall somewhat short
of the desired goal, However, this initial thrust into the investigation
of engine/airframe interface has demonstrated a few of the problems

which must be considered.

A continuing effort is required to obtain the eventual goal, i.e., the
specification of parameters and analytical or test procedures for
assuring improved engine/airframe vibratory compatibility and realistic
engine vibration limits, In particular, the determination of airframe
mobility parameters for the proper formulation of engine mounting and

the identification of primary structural modes of the airframe for the
full frequency range should be pursued. A further evaluation of the
impedance/mobility method should be conducted tc identify and resolve the
problems of mobility parameter determination using finite element stiff=
ness and mass distributions.
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TABLE II.

CENTER OF GRAVITY CALCULATION

PURPOSE: Shake Test

CONFIGURATION: Ballast for 3000 1b

HELICOPTER NO.:
FLIGHT NO.: N/A

40611

—

at Neutral CG DATE: 14 Feb 1973
ITEM WEIGHT LONGITUDINAL
(1b) ARM MOMENT
(in) (in=Lb)
REFPERENCE WEIGHT SHEET
DATED: 2-13-=73
Left Forward Jack Point 449 55,2
Right Forward Jack Point 499 55.2
Aft Jack Point 894 180.6
AS WEIGHED: 1842 116.06 213,786,0
CHANGES:
(a) Dummy M/R Hub/Blade 279 107.1 29,880,9
(b) Dummy T/R Hub/Blade 9 352,2 3,169.8
Fuel: Full
Pilot/ Copilot 400 65,0 26,000,0
Crew: 200 164,0 20,800,0
Ballast: (a) 100 85.0 8,500,0
(b) 175 148,0 25,900,0
(&)
ENGINE START WEIGHT
LAND CENTER OF GRAVITY 3005 109,16 328,036.7 _l
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Case

TABLE VIII. LIST OF NUMERICAL ANALYSIS CASES 4%

Description

10

11-13

Compute engine response at all frequencies* using shake test
level forces for direct comparison with shake test results,

Compute engine response at 5,9, 11.8, and 23,6 Hertz using
shake test level forces and all airframe mobility phase
angles at the above frequencies shifted 180 degrees to
evaluate the possibility of a phase reference error,

Compute engine response at all frequencies related to 1007%
normal operating speeds using longitudinal unit forces
only to evaluate engine sensitivity to longitudinal forces,

Compute engine response at all frequencies related to 1007%
normal operating speeds using lateral unit forces only, at
all applicable airframe coordinates, to evaluate engine
response sensitivity to lateral forces.

Compute engine response at all frequencies related to 1007%
normal operating speeds using vertical unit forces only,
at all applicable airframe coordinates, to evaluate engine
response sensitivity to vertical forces.

Compute engine response for combined triaxial unit loads at
all frequencies and
a) disconnected shaft
b) pinned shaft
c) rigid shaft

Compute engine response for combined level f light forces at
90 knots, disconnected shaft for comparison with flight
test data,

Compute engine response for combined level f light forces at
110 knots, disconnected shaft for comparison with flight
test data.

Compute engine fcr combined level flight forces at 130 knots
and
a) disconnected shaft
b) pinned shaft
c) rigid shaft
for comparison with flight test data, and to evaluate
shaft restraint,

* See Table IX.
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TABLE IX, AIRFRAME EXCITATION FREQUENCIES
Source ____Percent Normal Operating Speed
907 100% 110%
Main Rotor
1/Rev 5.3 5.9 6.5
2/Rev 10,6 11.8 13.0
4/Rev 21,2 23,6 26,0
6/Rev 31,8 35.4 39.0
8/Rev 42.4 47,2 52,0
Tail Rotor
1/Rev 39.4 43.8 48.2
2/Rev 78.8 87.6 96,4
Transmission
Input Drive Shaft
1/Rev 92,7 103,0 113,3
2/Rev 185.4 206,0 226.6
U #
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419

Figurc 22, Finite Element Representation of the T-63 Engine
and OH-58A Engine Mounts,
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UNDEFORMED

Three=Dimensional NASTRAN Model

of OH-58A Helicopter.

Figure 24,
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Figure 29, OH-58A Main Rotor Two=-Per-Rev and Four-
Per-Rev Vertical Shears,
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Figure 30. OH=-58A Main Rotor Six=-Per-Rev and Eight=-
Per-Rev Vertical Shears.,
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Figure 31, O0li-58A Main Rotor One-Per=Rev and Three=-
Per-Rev Inplane Shears.
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i

a) Vertical Excitation

b) Longitudinal Excitation ¢) Lateral Excitation

Figure 84, Detailed View of Mechanical Shaker and Hub
Installation for Excitation at the Main Rotor,
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Figure 85, Arrangement of Impedance Head for Force Measurement
Using the Lazan Mechanical Shaker for Longitudinal
and Lateral Cxcitation at the Main Rotor Hub,

Figure 86, Vari-Drive Assembly.
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b) Lateral Excitation

¢) Longitudinal Excitation

Figure 87. Arrangement of Electromagnetic Exciter and Hardware
for Excitation at the Main Rotor Hub,
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Figure 89.

Installation of Electromagnetic Exciter and Crank
Assembly for Typical Excitation at Engine Mounts,
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1) View of Crank Assembly b) Lateral Excitation

¢) Vertical Excitation

Figure 91, Arrangcnent of Exciter and Grank Assenbly for
5 1) \
Excitation at lLower PEngine Mount,
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b) Vertical Excitation

c¢) Longitudinal Excitation d) Lateral Excitatior

Figure 92, Arrangement of Exciter and Crank Assembly for
Excitation at Main Transmission Input Shaft.
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a) Crank Assembly b) Longitudinal Excitation

c¢) Lateral Excitation

Figure 93, Arrangement of Exciter and Crank Assembly
for Excitation at Engine Output Shaft,
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PO O . SO -

FRONT VIEW BOTTOM VIEW

%
RRONTICOMRRESSOR TURBINE MIDSPLIT

a) Lateral

FRONT VIEW SIDE VIEW

GEARBOX VERTICAL FRONT COMPRESSOR  TURBINE MIDSPLIT
/ FUEL
NOZZLE
=y

GEARBOX VERTICAL

GEARBOX
FORE AND AFT

b) Vertical and Longitudinal

Figure 95, Approximate Location of Engine=-Mounted Transducers,
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a) Transmission

b) Engine Bipods

Figure 98, Typical Installations of Triaxial Transducers on
Engine Bipods and Main Transmission,
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COORDINATE SYSTEM ORIENTATION:

up
LT -+ DIRECTIONS
FWD
FORCE ORIENTATION:
M/R Hub T/R Hub Eng. At Input Shaft
UP UP
LT LT
(-)
FWD FWD
AFT
(-
(-) DOWN Ll
Xmsn
Left Eng. Bipod Right Eng. Bipod Lower Eng. Bipod Input Shaft
up
LT LT LT
) FWD FWD FWD Z
RT FWD
(-) DOWN (-) DOWN (-) DOWN
ACCELEROMETER ORIENTATION:
Xmsn
Left Eng. Bipod Right Eng. Bipod Lower Eng. Bipod Input Shaft
UpP UP Up
LT LT LT
(-)
)—-—VFWD WD FWD  ppr
(=) BT (-) DOWN

Figure 105, Coordinate System, Force, and Transducer Orientations.
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FORCED COORDINATE
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Partitioning for the Airframe Mobility Matrix.

Figure 106.
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LIST OF APPENDIXES

Appendix
A SIMPLE MODEL PARAMETERS
B TWO-DIMENSIONAL OH-58A NASTRAN MODEL PARAMETERS
C T-63 NASTRAN MODEL PARAMETERS
D MOBILITY ANALYSIS PROGRAM LISTING
E THREE-DIMENSIONAL OH-58A NASTRAN MODEL PARAMETERS
F NASTRAN AND MOBILITY ANALYSIS ENGINE RESPONSE DATA
G TEST EQUIPMENT AND INSTRUMENTATION CALIBRATION DATA
H SHAKE TEST RESULTS
J AIRFRAME AND ENGINE TEST MOBILITIES
K COMPUTER PROGRAM LISTING
L MOBILITY ANALYSIS DATA

The above appendixes contain all data generated in the performance of
this study. The data is not included in this publication. However,
these appendixes are on file at the United States Army Air Mobility
Research and Development Laboratory, Fort Eustis, Virginia, and will
be furnished on request.
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[c]

eiwt

f(t)

F(w)

(k]
(M]

V(w)

GLOSSARY OF TERMS

Acceleration signal

Impedance head acceleration signal
Matrix of element damping constants
Unit complex vector

Forcing function, time domain

Applied forces

Fourier transform of harmonic forcing function, frequency

domain

Matrix of element spring constants (stiffnesses)
Matrix of element masses

Coordinate velocity

Fourier transform of harmonic response (velocity),
frequency domain

Free system velocities at external coordinates
Velocity of coordinate N of a simple system
Displacement function, time domain

Velocity function, time domain

Acceleration function, time domain

Fuselage station coordinate axis

Element mobility; fuselage buttlines coordinate axis
Matrix of mobilities at frequency w

Matrix of engine responses due to airframe excitation
sources

Transfer mobility of a simple system at coordinate N due

to an external force at some other coordinate (specifically
an interface coordinate)
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GLOSSARY OF TERMS - Continued

Y1j 2obility element foihthe response of the ith coordinate due
o a force at the j*? coordinate

Z Element impedance; fuselage waterline coordinate axis

[Z(w)] Matrix of impedances at frequency w

) Mobility phase angle

. Period of harmonic function

Bx Finite element angular displacement coordinate (torsion)

w Excitation frequency .

{ } Vector of element forces, velocities, etc,

[ ] Matrix of element masses, springs, damping, impedances,
mobilities, etc,

d Derivative with respect to time

dt

I Integration

SUBSCRIPTS

142 e e Sequential elements

E External coordinate reference

I Internal coordinate reference

EE External coordinate response reference, external coordinate
force reference

El External coordinate response reference, internal coordinate
force reference

11 Internal coordinate response reference, internal coordinate
force reference

1E Internal coordinate response reference, external coordinate

force reference
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GLOSSARY OF TERMS - Concluded

SUB=SUBSCRIPTS

1321413 9 o o Denotes submatrix of the free system primary mobility
matrix partitioning

SUPERSCRIPTS

I System 1, independent system reference; airframe system
parameter

11 System 2, dependent system reference; engine system parameter
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